Dorso-ventral and rostro-caudal sequential expression of M-twist in the postimplantation murine embryo
نویسندگان
چکیده
M-twist is the murine homolog of the Drosophila twist gene which is a zygotic target for maternal genes that establish embryonic dorso-ventral polarity and is necessary for mesoderm formation. We recently showed that before gastrulation, M-twist transcripts are detected in morulae and blastocysts, then in extra-embryonic tissues of early implanted mouse embryos before the onset of gastrulation, and we suggested that M-twist might be involved in embryonic polarity (Stoetzel et al., submitted). Here, using in situ hybridization on whole mount embryos, we present the expression pattern of M-twist from primitive streak stage up to 10.5 days p.c. In implanted embryos, M-twist is first expressed in extra-embryonic tissues, then in embryo proper around egg cylinder stage within some embryonic ectodermal cells of the primitive streak. Slightly later, scattered cells within the amniotic cavity apparently detached from the primitive streak also express the gene. Then, M-twist transcripts accumulate in head mesenchyme, the first aortic arches, somites and lateral mesoderm and, as development proceeds, successively the second, third and fourth branchial arches, the anterior limb buds and, finally, the posterior limb buds. Thus M-twist expression in implanted embryos occurs first along a dorso-ventral gradient pattern until the headfold stage, then it is gradually observed along the rostro-caudal axis of the embryos as development procedes in the mesodermal cell layer and in neural crest cell derivatives. In addition, we show the existence of some previously undescribed subsets of scattered cells that express M-twist and thus might participate in murine embryo development.
منابع مشابه
Differential Contributions of Dorso-Ventral and Rostro-Caudal Prefrontal White Matter Tracts to Cognitive Control in Healthy Older Adults
Prefrontal cortex mediates cognitive control by means of circuitry organized along dorso-ventral and rostro-caudal axes. Along the dorso-ventral axis, ventrolateral PFC controls semantic information, whereas dorsolateral PFC encodes task rules. Along the rostro-caudal axis, anterior prefrontal cortex encodes complex rules and relationships between stimuli, whereas posterior prefrontal cortex en...
متن کاملLateral prefrontal cortex is organized into parallel dorsal and ventral streams along the rostro-caudal axis.
Anatomical connectivity differences between the dorsal and ventral lateral prefrontal cortex (PFC) of the non-human primate strongly suggests that these regions support different functions. However, after years of study, it remains unclear whether these regions are functionally distinct. In contrast, there has been a groundswell of recent studies providing evidence for a rostro-caudal functiona...
متن کاملA Radial Glia Fascicle Leads Principal Neurons from the Pallial-Subpallial Boundary into the Developing Human Insula
The human insular lobe, in the depth of the Sylvian fissure, displays three main cytoarchitectonic divisions defined by the differentiation of granular layers II and IV. These comprise a rostro-ventral agranular area, an intermediate dysgranular area, and a dorso-caudal granular area. Immunohistochemistry in human embryos and fetuses using antibodies against PCNA, Vimentin, Nestin, Tbr1, and Tb...
متن کاملNeuronal induction and regional identity by co-culture of adherent human embryonic stem cells with chicken notochords and somites.
The role of somites and notochords in neuroectoderm differentiation from the embryonic ectoderm and its subsequent patterning into regional compartments along rostro-caudal and dorso-ventral axes, especially in humans, remains elusive. Here, we demonstrate the co-culture effect of somites and notochords isolated from chicken embryos on the neuronal differentiation and regional identity of an ad...
متن کاملEvolution of Axis Specification Mechanisms in Jawed Vertebrates: Insights from a Chondrichthyan
The genetic mechanisms that control the establishment of early polarities and their link with embryonic axis specification and patterning seem to substantially diverge across vertebrates. In amphibians and teleosts, the establishment of an early dorso-ventral polarity determines both the site of axis formation and its rostro-caudal orientation. In contrast, amniotes retain a considerable plasti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mechanisms of Development
دوره 51 شماره
صفحات -
تاریخ انتشار 1995